Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.049
Filtrar
1.
J Environ Manage ; 357: 120766, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565032

RESUMO

Biofouling presents hazards to a variety of freshwater and marine underwater infrastructures and is one of the direct causes of species invasion. These negative impacts provide a unified goal for both industry practitioners and researchers: the development of novel antifouling materials to prevent the adhesion of biofouling. The prohibition of tributyltin (TBT) by the International Maritime Organization (IMO) in 2001 propelled the research and development of new antifouling materials. However, the evaluation process and framework for these materials remain incomplete and unsystematic. This mini-review starts with the classification and principles of new antifouling materials, discussing and summarizing the methods for assessing their biofouling resistance. The paper also compiles the relevant regulations and environmental requirements from different countries necessary for developing new antifouling materials with commercial potential. It concludes by highlighting the current challenges in antifouling material development and future outlooks. Systematic evaluation of newly developed antifouling materials can lead to the emergence of more genuinely applicable solutions, transitioning from merely laboratory products to materials that can be effectively used in real-world applications.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Água Doce , Indústrias
2.
J Environ Manage ; 357: 120824, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583379

RESUMO

Extending the solids retention time (SRT) has been demonstrated to mitigate membrane biofouling. Nevertheless, it remains an intriguing question whether the compact and water flushing resistant mesh biofilms developed at short SRT can undergo biodegradation and be removed with extended SRT. In present study, the bio-fouled mesh filter in the 10d-SRT dynamic membrane bioreactor (DMBR), with mesh surfaces and pores covered by compact and water flushing resistant biofilms exhibiting low water permeability, was reused in the 40d-SRT DMBR without any cleanings. After being reused at 40d-SRT, its flux driven by gravity occurred from the 10th day and recovered to a regular level of 36.7 L m-2·h-1 on the 27th day. Both scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM) analyses indicated that the compact mesh biofilms formed at10d-SRT biodegraded and were removed at 40d-SRT, with the residual biofilms becoming removable by water flushing. As a result, the hydraulic resistance of the bio-fouled mesh filter decreased from 4.36 × 108 to 6.97 × 107 m-1, and its flux fully recovered. The protein and polysaccharides densities in mesh-biofilms decreased from 24.4 to 9.7 mg/cm2 and from 10.7 to 0.10 mg/cm2, respectively, which probably have contributed to the disappearance of compact biofilms and the decrease in adhesion. Furthermore, the sludge and mesh-biofilms in the 40d-SRT reactor contained a higher relative abundance of dominant quorum quenching bacteria, such as Rhizobium (3.52% and 1.35%), compared to those in the 10d-SRT sludge (0.096%) and mesh biofilms (0.79%), which might have been linked to a decline in extracellular polymeric substances and, consequently, the biodegradation and disappearance of compact biofilms.


Assuntos
Incrustação Biológica , Esgotos , Biofilmes , Incrustação Biológica/prevenção & controle , Filtração , Reatores Biológicos/microbiologia , Membranas Artificiais
3.
Molecules ; 29(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474684

RESUMO

Implant-associated infections (IAIs) represent a major health burden due to the complex structural features of biofilms and their inherent tolerance to antimicrobial agents and the immune system. Thus, the viable options to eradicate biofilms embedded on medical implants are surgical operations and long-term and repeated antibiotic courses. Recent years have witnessed a growing interest in the development of robust and reliable strategies for prevention and treatment of IAIs. In particular, it seems promising to develop materials with anti-biofouling and antibacterial properties for combating IAIs on implants. In this contribution, we exclusively focus on recent advances in the development of modified and functionalized implant surfaces for inhibiting bacterial attachment and eventually biofilm formation on orthopedic implants. Further, we highlight recent progress in the development of antibacterial coatings (including self-assembled nanocoatings) for preventing biofilm formation on orthopedic implants. Among the recently introduced approaches for development of efficient and durable antibacterial coatings, we focus on the use of safe and biocompatible materials with excellent antibacterial activities for local delivery of combinatorial antimicrobial agents for preventing and treating IAIs and overcoming antimicrobial resistance.


Assuntos
Antibacterianos , Incrustação Biológica , Humanos , Antibacterianos/farmacologia , Biofilmes , Próteses e Implantes , Complicações Pós-Operatórias , Materiais Revestidos Biocompatíveis/química , Titânio/química
4.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542910

RESUMO

Global water scarcity is a threat that can be alleviated through membrane filtration technologies. However, the widespread adoption of membranes faces significant challenges, primarily due to membrane biofouling. This is the reason why membrane modifications have been under increasing investigation to address the fouling issues. Antibacterial membranes, designed to combat biofouling by eliminating microorganisms, offer a promising solution. Within this study, flat sheet ultrafiltration (UF) membranes with integrated photocatalytic zinc oxide (ZnO) nanoparticles were developed, characterized, and assessed through filtration and fouling tests. The antibacterial properties of the membranes were conducted in static tests using Gram-negative bacteria-Escherichia coli-and natural tap water biofilm. The results demonstrated a notable enhancement in membrane surface wettability and fouling resistance. Furthermore, the incorporation of ZnO resulted in substantial photocatalytic antibacterial activity, inactivating over 99.9% of cultivable E. coli. The antibacterial activity persisted even in the absence of light. At the same time, the persistence of natural tap water organisms in biofilms of modified membranes necessitates further in-depth research on complex biofilm interactions with such membranes.


Assuntos
Incrustação Biológica , Nanopartículas , Purificação da Água , Óxido de Zinco , Incrustação Biológica/prevenção & controle , Ultrafiltração , Óxido de Zinco/farmacologia , Escherichia coli , Membranas Artificiais , Antibacterianos/farmacologia , Água , Purificação da Água/métodos
5.
Sci Total Environ ; 926: 171863, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518817

RESUMO

Paint used to coat surfaces in aquatic environments often contain biocides to prevent biofouling, and as these coatings degrade, antifouling paint particles (APPs) end up in aquatic, and especially marine, sediments. However, it is currently unclear what further influence APPs in the sediment have on biotic communities or processes. This study investigates how a variety of commercially-available APPs effect the marine microbial community by spiking different laboratory-manufactured APPs to sediment. Following exposure for 30 and 60 days, APPs caused a clear and consistent effect on the bacterial community composition as determined by 16S metabarcoding. This effect was strongest between 0 and 30 days, but continues to a lesser extent between 30 and 60 days. APPs appear to inhibit the highly diverse, but in general rarer, fraction of the community and/or select for specific community members to become more dominant. 71 antifouling-presence and 454 antifouling-absence indicator taxa were identified by indicator analysis. The difference in the level of classification in these two indicator groups was highly significant, with the antifouling-presence indicators having much higher percentage sequence identity to cultured taxa, while the antifouling-absence indicators appear to be made up of undescribed taxa, which may indicate that APPs act as a proxy for general anthropogenic influence or that APP contamination selects for taxa capable of being cultured. Given the clear and consistent effect APPs have on the surrounding sediment microbial community, further research into how APPs affect sediment functional processes and how such effects scale with concentration is recommended to better assess the wider consequences of these pollutants for marine biogeochemical cycles in the future. SYNOPSIS: Microplastic-paint particles are commonly found in marine sediment but little is known about how these, especially antifouling, paint particles affect sediment microbial communities. This study demonstrates that antifouling paint particles fundamentally alter sediment microbial communities.


Assuntos
Incrustação Biológica , Microbiota , Poluentes Químicos da Água , Incrustação Biológica/prevenção & controle , Microplásticos , Plásticos , Pintura/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química
6.
Int J Biol Macromol ; 265(Pt 2): 130994, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518950

RESUMO

Biofouling remains a persistent challenge within the domains of biomedicine, tissue engineering, marine industry, and membrane separation processes. Multifunctional hydrogels have garnered substantial attention due to their complex three-dimensional architecture, hydrophilicity, biocompatibility, and flexibility. These hydrogels have shown notable advances across various engineering disciplines. The antifouling efficacy of hydrogels typically covers a range of strategies to mitigate or inhibit the adhesion of particulate matter, biological entities, or extraneous pollutants onto their external or internal surfaces. This review provides a comprehensive review of the antifouling properties and applications of hydrogels. We first focus on elucidating the fundamental principles for the inherent resistance of hydrogels to fouling. This is followed by a comprehensive investigation of the methods employed to enhance the antifouling properties enabled by the hydrogels' composition, network structure, conductivity, photothermal properties, release of reactive oxygen species (ROS), and incorporation of silicon and fluorine compounds. Additionally, we explore the emerging prospects of antifouling hydrogels to alleviate the severe challenges posed by surface contamination, membrane separation and wound dressings. The inclusion of detailed mechanistic insights and the judicious selection of antifouling hydrogels are geared toward identifying extant gaps that must be bridged to meet practical requisites while concurrently addressing long-term antifouling applications.


Assuntos
Incrustação Biológica , Hidrogéis , Hidrogéis/farmacologia , Hidrogéis/química , Incrustação Biológica/prevenção & controle , Interações Hidrofóbicas e Hidrofílicas , Silício
7.
Environ Sci Technol ; 58(13): 6019-6029, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38509821

RESUMO

Recovering ammonium from swine wastewater employing a gas-permeable membrane (GM) has potential but suffers from the limitations of unattractive mass transfer and poor-tolerance antifouling properties. Turbulence is an effective approach to enhancing the release of volatile ammonia from wastewater while relying on interfacial disturbance to interfere with contaminant adhesion. Herein, we design an innovative gas-permeable membrane coupled with bubble turbulence (BT-GM) that enhances mass transfer while mitigating membrane fouling. Bubbles act as turbulence carriers to accelerate the release and migration of ammonia from the liquid phase, increasing the ammonia concentration gradient at the membrane-liquid interface. In comparison, the ammonium mass transfer rate of the BT-GM process applied to real swine wastewater is 38% higher than that of conventional GM (12 h). Through a computational fluid dynamics simulation, the turbulence kinetic energy of BT-GM system is 3 orders of magnitude higher than that of GM, and the effective mass transfer area is nearly 3 times that of GM. Seven batches of tests confirmed that the BT-GM system exhibits remarkable antifouling ability, broadens its adaptability to complex water quality, and practically promotes the development of sustainable resource recycling.


Assuntos
Compostos de Amônio , Incrustação Biológica , Suínos , Animais , Amônia/análise , Águas Residuárias , Incrustação Biológica/prevenção & controle , Reciclagem
8.
Anal Chim Acta ; 1299: 342449, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499430

RESUMO

Antifouling biosensors capable of preventing protein nonspecific adhesion in real human bodily fluids are highly sought-after for precise disease diagnosis and treatment. In this context, an enhanced split-type photoelectrochemical (PEC) aptasensor was developed incorporating a four-armed polyethylene glycol (4A-PEG) to construct a robust antifouling coating, enabling accurate and sensitive bioanalysis. The split-type PEC system involved the photoelectrode and the biocathode, effectively separating signal converter with biorecogniton events. Specifically, the TiO2 electrode underwent sequential modification with ZnIn2S4 (ZIS) and polydopamine (PDA) to form the PDA/ZIS/TiO2 photoelectrode. The cathode substrate was synthesized as a hybrid of N-doped graphene loaded with Pt nanoparticles (NG-Pt), and subsequently modified with 4A-PEG to establish a robust antifouling coating. Following the anchoring of probe DNA (pDNA) on the 4A-PEG-grafted antifouling coating, the biocathode for model target of cancer antigen 125 (CA125) was obtained. Leveraging pronounced photocurrent output of the photoelectrode and commendable antifouling characteristics of the biocathode, the split-type PEC aptasensor showcased exceptional detection performances with high sensitivity, good selectivity, antifouling ability, and potential feasibility.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Humanos , Polietilenoglicóis , Incrustação Biológica/prevenção & controle , Técnicas Eletroquímicas , Processos Fotoquímicos
9.
Chemosphere ; 353: 141650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462183

RESUMO

Recently, gravity-driven membrane (GDM) filtration has been adopted as an alternative solution for decentralized wastewater treatment due to easy installation and maintenance, reduced energy and operation cost, and low global warming impact. This study investigated the influence of microplastic size (0.5-0.8 µm and 40-48 µm) and amount (0.1 and 0.2 g/L) on the membrane performance and microbial community in GDM systems for primary municipal wastewater treatment. The results showed that dosing microplastics in the GDM systems led to 9-54% lower permeate flux than that in the control. This was attributed to more cake formation (up to 6.4-fold) with more deposition of extracellular polymeric substances (EPS, up to 1.5-fold) and divalent cations (up to 2.1-fold) in the presence of microplastics, especially with increasing microplastic amount or size. However, the dosed microplastics promoted formation of heterogeneous cake layers with more porous nature, possibly because microplastics created void space in the cake and also tended to bind with divalent cations to reduce EPS-divalent cations interactions. In the biofilm of the GDM systems, the presence of microplastics could lower the number of total species, but it greatly enhanced the abundance of certain dominant prokaryotes (Phenylobacterium haematophilum, Planctomycetota bacterium, and Flavobacteriales bacterium), eukaryotes (Stylonychia lemnae, Halteria grandinella, and Paramicrosporidium saccamoebae), and virus (phylum Nucleocytoviricota), as well as amino acid and lipid metabolic functions. Especially, the small-size microplastics at a higher dosed amount led to more variations of microbial community structure and microbial metabolic functions.


Assuntos
Incrustação Biológica , Microbiota , Purificação da Água , Águas Residuárias , Microplásticos , Plásticos , Cátions Bivalentes , Membranas Artificiais , Filtração/métodos , Purificação da Água/métodos
10.
Ecotoxicol Environ Saf ; 274: 116187, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460404

RESUMO

Due to the adverse environmental impacts of toxic heavy metal-based antifoulants, the screening of environmentally friendly antifoulants has become important for the development of marine antifouling technology. Compared with the traditional lengthy and costly screening method, computer-aided drug design (CADD) offers a promising and efficient solution that can accelerate the screening process of green antifoulants. In this study, we selected barnacle chitin synthase (CHS, an important enzyme for barnacle settlement and development) as the target protein for docking screening. Three CHS genes were identified in the barnacle Amphibalanus amphitrite, and their encoded proteins were found to share a conserved glycosyltransferase domain. Molecular docking of 31,561 marine natural products with AaCHSs revealed that zoanthamine alkaloids had the best binding affinity (-11.8 to -12.6 kcal/mol) to AaCHSs. Considering that the low abundance of zoanthamine alkaloids in marine organisms would limit their application as antifoulants, a marine fungal-derived natural product, mycoepoxydiene (MED), which has a similar chemical structure to zoanthamine alkaloids and the potential for large-scale production by fermentation, was selected and validated for stable binding to AaCHS2L2 using molecular docking and molecular dynamics simulations. Finally, the efficacy of MED in inhibiting cyprid settlement of A. amphitrite was confirmed by a bioassay that demonstrated an EC50 of 1.97 µg/mL, suggesting its potential as an antifoulant candidate. Our research confirmed the reliability of using AaCHSs as antifouling targets and has provided insights for the efficient discovery of green antifoulants by CADD.


Assuntos
Alcaloides , Incrustação Biológica , Thoracica , Animais , Quitina Sintase/genética , Quitina Sintase/metabolismo , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes , Incrustação Biológica/prevenção & controle , Alcaloides/farmacologia , Larva
11.
Environ Sci Technol ; 58(14): 6435-6443, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551393

RESUMO

Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied in situ self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO3 nanoparticles (nCaCO3) were used as the model nanofillers, which can be in situ etched by reacting with H+ to leave void nanostructures behind. This reaction can further degas CO2 nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO3-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.


Assuntos
Incrustação Biológica , Nanopartículas , Osmose , Nylons/química , Gravuras e Gravação , Membranas Artificiais , Água/química
12.
Sci Total Environ ; 924: 171638, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485027

RESUMO

Biofouling limits applications of membrane technology in wastewater treatment, but dosing additives to membrane tanks is an effective method to alleviate biofouling. In this study, biochar derived from corncob and pyrolyzed at 300, 500, and 700°C was dosed to determine the underlying anti-biofouling mechanism. The effects of the biochar on the membrane properties and foulant behavior were systematically investigated. The results showed that biochar delayed the occurrence of the fouling transition (0.5-3.0 h), and decreased the flux decline rate, thus achieving a higher water flux (3.1-3.7 times of the control group). Biochar altered membrane surface properties, and increased the membrane surface charge, roughness, and hydrophilicity, which all contributed to higher membrane permeability. Moreover, adding biochar reduced the number of foulants in the fouling layer, particularly protein substances. The flux model fit and the XDLVO theory further revealed the mitigating effect of biochar on membrane biofouling. At the initial intermediate-blocking stage, the effect of biochar on membrane fouling was determined by its properties, and adsorption capacity to the foulants, BC500 presented the best mitigation performance. At the later cake-filtration stage, the role of biochar in membrane fouling was strongly associated with protein content in the fouling layer, and the minimum rate of flux decline occurred in BC300. This study promotes the understanding and development of biochar to alleviate membrane biofouling.


Assuntos
Incrustação Biológica , Carvão Vegetal , Purificação da Água , Incrustação Biológica/prevenção & controle , Pirólise , Temperatura , Membranas Artificiais , Purificação da Água/métodos
13.
Biofouling ; 40(2): 130-152, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450626

RESUMO

The identification and management of biofouling remain pressing challenges in marine and freshwater ecosystems, with significant implications for environmental sustainability and industrial operations. This comprehensive review synthesizes the current state-of-the-art in biofouling identification technologies, examining eight prominent methodologies: Microscopy Examination, Molecular Biology, Remote Sensing, Community Involvement, Ecological Methods, Artificial Intelligence, Chemical Analysis, and Macro Photography. Each method is evaluated for its respective advantages and disadvantages, considering factors such as precision, scalability, cost, and data quality. Furthermore, the review identifies current obstacles that inhibit the optimal utilization of these technologies, ranging from technical limitations and high operational costs to issues of data inconsistency and subjectivity. Finally, the review posits a future outlook, advocating for the development of integrated, standardized systems that amalgamate the strengths of individual approaches. Such advancement will pave the way for more effective and sustainable strategies for biofouling identification and management.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Biofilmes , Ecossistema , Inteligência Artificial
14.
Biofouling ; 40(2): 153-164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450621

RESUMO

Quorum quenching (QQ) by cell entrapping beads (CEBs) is known to inhibit biofouling by its biological and physical cleaning effect. Although there are better QQ media reported, due to the ease of fabrication of QQ-CEBs, this study focused on improving the quality of CEBs by comparing two distinct bead-making methods - polyvinyl alcohol-alginate (PVA-alginate) and phase inversion - and on finding the optimum concentration of QQ bacteria in the CEBs. The evaluation of PVA-alginate bead showed better uniformity, and higher mechanical and chemical strength in comparison with the phase inversion bead. Through the operations of two control membrane bioreactors (MBRs) (no bead, vacant bead) and four QQ-MBRs with different Rhodococcus sp. BH4 concentrations (2.5-15 mg cell ml-1) in PVA-alginate CEBs, the maximum QQ effect was observed by 5 mg ml-1 BH4 concentration beads. This implies that an optimum cell concentration of QQ-CEBs is crucial to economically improve MBR performance using QQ.


Assuntos
Incrustação Biológica , Percepção de Quorum , Incrustação Biológica/prevenção & controle , Biofilmes , Membranas Artificiais , Bactérias , Alginatos , Reatores Biológicos/microbiologia , Álcool de Polivinil
15.
Biofouling ; 40(2): 193-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38456659

RESUMO

Updated understanding on the effect of biofouling on corrosion rate is needed to protect marine structures as climate change is altering seawater physiochemistry and biofouling organism distribution. Multi-disciplinary techniques can improve understanding of biofouling development and associated corrosion rates on metals immersed in natural seawater (NSW). In this study, the development of biofouling and corrosion on welded Nickel Aluminium Bronze (NAB) was investigated through long-term immersion tests in NSW, simulated seawater (SSW) and air. Biofouling was affected by geographic location within the marina and influenced corrosion extent. The corrosion rate of NAB was accelerated in the initial months of exposure in NSW (1.27 mm.yr-1) and then settled to 0.11 mm.yr-1 (annual average). This was significantly higher than the 0.06 mm.yr-1 corrosion rate measured in SSW, which matched published rates. The results suggest that corrosion rates for cast NAB should be revised to take account of biofouling and updated seawater physiochemistry.


Assuntos
Incrustação Biológica , Biofilmes , Alumínio/química , Níquel , Corrosão , Água do Mar/química
16.
Biofouling ; 40(2): 209-222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38500010

RESUMO

This study explores the potential of geranium essential oil as a natural solution for combating marine biofouling, addressing the environmental concerns associated with commercial antifouling coatings. Compounds with bactericidal activities were identified by 13Carbon nuclear magnetic resonance (13C NMR). Thermogravimetric analysis (TGA) revealed minimal impact on film thermal stability, maintaining suitability for antifouling applications. The addition of essential oil induced changes in the morphology of the film and Fourier transform infrared spectroscopy (FTIR) analysis indicated that oil remained within the film. Optical microscopy showed an increase in coating porosity after immersion in a marine environment. A total of 18 bacterial colonies were isolated, with Psychrobacter adeliensis and Shewanella algidipiscicola being the predominant biofilm-forming species. The geranium essential oil-based coating demonstrated the ability to reduce the formation of Psychrobacter adeliensis biofilms and effectively inhibit macrofouling adhesion for a duration of 11 months.


Assuntos
Incrustação Biológica , Geranium , Óleos Voláteis , Psychrobacter , Biofilmes , Incrustação Biológica/prevenção & controle , Óleos Voláteis/farmacologia , Óleos de Silicone/farmacologia , Silicones
17.
Water Res ; 254: 121435, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461605

RESUMO

Abandoning the costly development of new membrane materials and instead directly remodeling the naturally occurring cake layer constitutes a dynamic, low-cost, long-lasting, and proactive strategy to "fight fouling with fouling". Several optimization strategies, including coagulation/modified magnetic seed loading and applying a weak magnetic force (0.01T) at the ultrafiltration end, improved the anti-fouling, retention, and sieving performances of conventional ultrafiltration process during the treatment of source water having complex natural organic matter (NOMs) and small molecule micropollutants. Two modified magnetic seeds we prepared were composite nano-seed particles (Fe3O4@SiO2-NH2 (FS) and Fe3O4@SiO2@PAMAM-NH2 (FSP)). Aim of the study was to regulate the formation of cake layer via comprehensive testing of the antifouling properties of optimized processes and related mechanistic studies. It was found to be essential to enhance the interception of xanthate and tryptophan proteins in the cake layer for improving the anti-fouling performance based on the correlation and redundancy analyses, while the use of modified magnetic seeds and magnetic field showed a significant positive impact on water production. Blockage modeling demonstrated the ability to form a mature cake layer during the initial filtration stage swiftly. This mitigated the risk of irreversible fouling caused by pore blockage during the early stage of coagulation-ultrafiltration. Morphologically, the reconstructed cake layer exhibited elevated surface porosity, an internal cavity channel structure, and enhanced roughness that can promote increased water flux and retention of water impurities. These optimized the maturity of the cake layer in both time and space. Density Functional Theory (DFT), Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and Modified Extended Derjaguin-Landau-Verwey-Overbeek (MDLVO) calculations indicated aggregation behavior of matter on the cake layer to be enhanced effectively due to magnetic seed loading. This is mainly due to the strengthening of polar interactions, including hydrogen bonding, π-π* conjugation, etc., which can happen between the cake layer loaded with FSP and the organic matter. Under the influence of a magnetic field, magnetic force energy (VMF) significantly impacts the system by eliminating energy barriers. This research will provide innovative strategies for effectively purifying intricate source water through ultrafiltration while controlling membrane fouling.


Assuntos
Incrustação Biológica , Nanopartículas de Magnetita , Purificação da Água , Ultrafiltração , Incrustação Biológica/prevenção & controle , Dióxido de Silício , Membranas Artificiais , Água
18.
J Hazard Mater ; 469: 134093, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522199

RESUMO

The inadequate understanding of the biofouling formation mechanism and the absence of effective control have inhibited the commercial application of membrane distillation (MD). In this study, an advanced oxidation process (AOP)/coagulation-coupled (Coag) membrane distillation system was proposed and exhibited the potential for MD ammonia recovery (recovery rate: 94.1%). Extracellular polymeric substances (EPS) and soluble microbial products (SMP) components such as humic acid and tryptophan-like proteins were disrupted and degraded in the digestate. The curtailment and sterilizing efficiency of AOP on biofilm growth was also verified by optical coherence tomography (OCT) in situ real-time monitoring and confocal laser scanning microscopy (CLSM). Peroxymonosulfate (PMS) was activated to generate sulfate (SO4•-) and hydroxyl radicals (HO•), which altered the microbial community. After oxidative treatment, 16 S rRNA sequencing indicated that the dominant phylum of the microbial community evolved into Firmicutes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that free radicals produced by PMS could disrupt cells' signaling molecules and interactions. In conjunction with these analyses, the mechanisms of response to free radical attack by Gram-negative bacteria, Gram-positive bacteria, and fungi were revealed. This research provided new insights into the field of membrane fouling control for membrane technology resource recovery processes, broadening the impact of AOP applications on microbiological response and fate in the environment.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Amônia , Destilação , Membranas Artificiais , Biofilmes
19.
ACS Appl Bio Mater ; 7(3): 1842-1851, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38416807

RESUMO

The growing concerns regarding foodborne illnesses related to fresh produce accentuate the necessity for innovative material solutions, particularly on surfaces that come into close contact with foods. This study introduces a sustainable, efficient, and removable antimicrobial and antifouling coating ideally suited for hydrophobic food-contact surfaces such as low-density polyethylene (LDPE). Developed through a crosslinking reaction involving tannic acid, gelatin, and soy protein hydrolysate, these coatings exhibit proper stability in aqueous washing solutions and effectively combat bacterial contamination and prevent biofilm formation. The unique surface architecture promotes the formation of halamine structures, enhancing antimicrobial efficacy with a rapid contact killing effect and reducing microbial contamination by up to 5 log10 cfu·cm-2 against both Escherichia coli (Gram-negative) and Listeria innocua (Gram-positive). Notably, the coatings are designed for at least five recharging cycles under mild conditions (pH6, 20 ppm free active chlorine) and can be easily removed with hot water or steam to refresh the depositions. This removal process not only conveniently aligns with existing sanitation protocols in the fresh produce industry but also facilitates the complete eradication of potential developed biofilms, outperforming uncoated LDPE coupons. Overall, these coatings represent sustainable, cost-effective, and practical advancements in food safety and are promising candidates for widespread adoption in food processing environments.


Assuntos
Anti-Infecciosos , Incrustação Biológica , Polifenóis , Polietileno , Anti-Infecciosos/farmacologia , Povidona , Escherichia coli
20.
Environ Sci Pollut Res Int ; 31(13): 20159-20171, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372927

RESUMO

Marine biofouling is a global issue with economic and ecological implications. Existing solutions, such as biocide-based antifouling paints, are toxic for the environment. The search for better antifouling agents remains crucial. Recent research focuses on eco-friendly antifouling paints containing natural compounds like enzymes. This study evaluates enzymatic extracts from fishery residues for antifouling potential. Extracts from Pleoticus muelleri shrimp, Illex argentinus squid, and Lithodes santolla king crab were analyzed. Proteolytic activity and thermal stability were assessed, followed by bioassays on mussel byssus thread formation and barnacle cypris adhesive footprints. All three extracts demonstrated proteolytic activity and 24-h stability at temperate oceanic temperatures, except I. argentinus. P. muelleri extracts hindered cyprid footprint formation and mussel byssus thread generation. Further purification is required for L. santolla extract to assess its antifouling potential activity. This study introduces the use of fishery waste-derived enzyme extracts as a novel antifouling agent, providing a sustainable tool to fight against biofouling formation.


Assuntos
Incrustação Biológica , Desinfetantes , Incrustação Biológica/prevenção & controle , Pesqueiros , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...